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Abstract— Road profiles are a major excitation to the chassis 

and the resulting loads drive vehicle designs.  The physical 

resources needed to measure, record, analyze, and characterize 

an entire set of real, spectrally broad roads is often infeasible 

for simulation.  This motivates the need for more accurate 

models for characterizing roads and for generating synthetic 

road profiles of a specific type.  First order Markov Chain 

models using uniform sized bins to define the states have been 

previously proposed to characterize and synthetically generate 

road profiles.  This method, however, was found to be 

unreliable when the number of states is increased to improve 

resolution.  In an effort to solve this problem, this work 

develops a method by which states are defined using non-

uniform sized, percentile-based bins which results in a more 

fully populated transition matrix.  A statistical test is developed 

to quantify the confidence with which the estimated transition 

matrix represents the true underlying stochastic process.  The 

order of the Markov Chain representation of the original and 

synthetic profiles is checked using a series of preexisting 

likelihood ratio criteria.  This method is demonstrated on data 

obtained at the Virginia Tech VTTI location and shows a 

considerable improvement in the estimation of the transition 

properties of the stochastic process.  This is evidenced in the 

subsequent generation of synthetic profiles.   

I. INTRODUCTION 

HASSIS development is an iterative process that 

requires that the designer have prior knowledge about 

input excitations in order to predict target chassis loads [1].  

The main and continuous excitation to the chassis is the 

terrain or road over which a vehicle travels.  By providing 

the designer with a set of consistent characteristic terrain 

profiles, more accurate predictions about chassis loads can 

be made.  A consistent set of terrain profiles would allow the 

engineer to make informed decisions about the chassis 

design and simulate how those design options affect the peak 
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load estimation as well as long-term durability load analysis.   

Measuring, recording, and analyzing large continuous sets 

of multiple types of roads for simulation is costly and 

infeasible.  In this work, a measured road profile is 

considered a single realization of an underlying stochastic 

process.  A measured road profile, therefore, is only one of 

many possible profiles that the vehicle could encounter.  A 

mathematical framework must be developed to capture the 

properties of the underlying stochastic process, thereby 

characterizing the roads (realizations) that could be 

synthesized. 

Many different models for road profiles have been tested 

and applied.  The standard method used to characterize and 

classify road profiles is the power spectral density (PSD) [2], 

[3].  Some researchers have observed that the shape of the 

PSD is independent of the road type [4], whereas other 

researchers have shown, through individual example, a 

relationship between the dropping of the PSD amplitude for 

a large section of frequency bandwidth due to the removal of 

large spiked events in their data before PSD calculation [5].  

The view of the present authors is more in line with the 

latter’s observation, [5], that is the PSD is a generalized and 

global characterizing calculation, lumping both transient and 

long trend spatial analysis into one.  Although PSD’s and 

their approximations [3] have been standardized [6], the aim 

of this work is to apply a non-generalized first order Markov 

Chain model to a specific road profile, capture its specific 

properties, and employ the model to synthesize data with the 

same statistical properties.   

Other techniques have been proposed to characterize 

specific properties of specific roads.  The wavelet 

decomposition [7], and the Hilbert-Huang transform (HHT) 

[8]  have both shown great promise in identifying and 

extracting specific transient events in road profiles [8] [9].  

All of the previous methods, contribute to the observation 

that terrain and road profiles are a complex and diverse set 

of signals.  This observation and the application of many 

different models lead to the suggestion of rigorously testing 

of statistical properties of a profile before the application of 

a statistical model [10].  Similarly, in this paper, the authors 

propose the verification of the first order Markov Chain 

properties before application of the model. 

Markov Chains have been proposed as candidates for road 

profile models [1],[11].  However these methods were 

limited in their applicability when the transition matrix was 

sparsely populated.  Currently, the state is defined by 
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uniform sized bins (each bin captures an equal range of 

height variation in the terrain).  Each transition probability 

can be estimated from a measured profile by calculating the 

ratio of the number of transitions from sate i to state j to the 

number of departures from state j.  Now consider another 

road profile.  If the new profile is a realization of the same 

stochastic process, then the probability distribution for the 

number of transitions from state i to state j is defined by a 

binomial distribution.  In this way, an increased number of 

data points for a given transition will result in a more 

confident estimate of the transition probability.  In order to 

properly populate the estimated transition matrix, the states 

should be defined such that a significant number of data 

points occur within a state.  This motivates a change in 

methods to define the states.  Presently, this work develops a 

non-uniform, percentile-based state binning method to 

populate the estimated transition matrix.  This results in a 

more representative approximation of the underlying 

transition matrix when it is being estimated from real data. 

The method is demonstrated on a set of 89 measured two-

dimensional road profiles, obtained at the Virginia Tech 

VTTI location.  The data are used to generate first order 

Markov models and synthesize data.  The resulting 

distributions of the transition probabilities for both uniform 

and non-uniform sized state definitions are compared.  

Additionally, the resulting models are tested for 0th and 1st 

order Markov Chain properties using statistical likelihood 

ratio criteria.  Next, the appropriateness of these methods is 

tested using a statistical two sample Kolmogorov-Smirnov 

test of the binomial percentiles of data.  Two conclusions 

can be drawn from the results of these statistical tests: 1) The 

confidence in the estimated transition matrix is much higher 

when using the non-uniform, percentile-based method 

developed in this work, and 2) The ability to represent the 

data accurately as a first order Markov Chain is also better 

when using the proposed method.      

II. BACKGROUND 

In this section, the relationships between Markov Chains, 

transition matrices, and binomial distributions are presented.  

Let a family of random variables : be a discrete time 

stochastic process such that <:àá I L rásátå =.  Let 5 

denote the state space where state values Tà Ð 5áÊ�I.  The 

first order Markov property can be stated as: 

 

2::à>5 L Tà>5�:à L Tàá:à?5 L Tà?5á å á:4
L T4;�

L 2::à>5 L Tà>5�:à L Tà; 
(1) 

 

Equation (1) states that the future state Tà>5 is 

conditioned only on the present state Tà.  When the family 

of random variables :à satisfy the first order Markov 

property and are shown to have stationary transition 

probabilities, then a first order Markov Chain for N states can 

be described by a single transition matrix [12]. 

 

2 � LÜÝ L L::à>5 L F�:à L E;�
Ê E L sá å á N and F L sá å á N Ð 5 

(2) 

 

The estimated transition matrix is calculated in the 

following manner.  Let JÜÝ be the number of occurrences of 

transitions from state i to state j and let 0 be the matrix of all 

possible JÜÝ.  Then the maximum likelihood estimate (MLE) 

of the true transition matrix [13] has been shown to be 

 

2à � ĻÜÝ L
JÜÝ

0Ü
Ê�Eá F Ð 5 (3) 

where 

0Ü LÍJÜÝ
Ý

á ÊEá F Ð 5 (4) 

 

Now consider a new realization.  If the realization comes 

from the underlying stochastic process with these estimated 

transition probabilities, then the probability distribution for 

the number of transitions from state i to state j, JÜÝ, is a 

discrete binomial distribution with probability mass function 

(PMF) [14]. 

 

JÜÝ 1 >kJÜÝâ0Ü áLÜÝo�
L l0Ü

JÜÝ
pL

ÜÝ

áÔÕksF LÜÝoÇÔ?áÔÕ (5) 

 

where LÜÝ is estimated by  ĻÜÝ.  Note that the ith row in the 

estimated transition matrix can be equivalently expressed as 

a multinomial distribution.  Once the MLE (3) is obtained, 

synthetic profiles can be generated by uniformly randomly 

sampling from the binomial distribution.  Let JÜÝ
ñ  be the 

number of transitions from state i to state j in the synthetic 

profile, where the prime denotes “synthetic.  Then the 

synthetic profile is governed by 

JÜÝ
ñ 1 >kJÜÝñ â0ÜÝñ á ĻÜÝo (6) 

Fig. 1 illustrates that binomial distribution PMF’s and 

cumulative distribution functions (CDF’s) have a wide range 

of shapes which are dependent on the total number of trials 

and probability of an event occurring.   Specifically, if there 

are an insufficient number of occurrences of a state 0Ü, then 

the estimate of the transition probability is poor and the 

sensitivity of the probability estimate is highly sensitive to 

small incremental changes in the number of occurrences.  

Consider the following two cases.  In Case 1 the number of 

departures is five and the transition probability is 0.2.  The 

expected number of occurrences is one and the change in the 

probability when the number of occurrences increases from 

one to two is 20%.  In Case 2 the number of departures is 50 

and the transition probability is 0.2.  The expected number 

of expected number of occurrences is ten and the change in 

the probability when the number of transitions increases  
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Fig. 1.  Two case example:  Binomial PMF’s and CDF’s showing 

sensitivity to distribution parameters 

 

from ten to eleven is 1%.  This example, graphically 

represented in Fig. 1, illustrates the effect of the number of 

occurrences on the confidence with which the transition 

probabilities can be calculated. 

Let ( @>kJÜÝâ0Ü áLÜÝoA be the CDF of the binomial 

distribution.  Then the binomial percentiles are defined by 

$ � srr� H ( @>kJÜÝâ0Ü áLÜÝoA ��Ê�Eá F Ð 5 (7) 

The differences between unpopulated and populated 

binomial distributions can also be described in terms of CDF 

percentiles.  A percentile is a value of a variable that marks 

where a certain percent of the observations fall under.  For 

example, the 40th percentile value indicates that 40% of the 

observations lie below the value.  Case 1 is only uniquely 

defined for the JÜÝ interval from zero (33%) to six (100%) 

occurrences, whereas Case 2 is uniquely defined for the 

entire JÜÝ range of zero (0%) to eighteen (1100%).  

Specifically, if a state is not well populated, then the 

binomial distribution underlying the transition matrix is not 

well defined.  This results in the limitation of the range of 

unique percentile values available to sample from when 

synthesizing data. 

 

III. STATISTICAL TESTS 

A. Likelihood Ratio Criterion Tests for Markov Chain 

Order 

The application of a Markov Chain model requires that the 

Markov Chain order be verified.  The problem of estimating 

the true transition matrix from data can be expressed using  

the likelihood principle.  The likelihood principle quantifies 

how “likely” an unknown parameter is, conditioned on the 

given data.  In this application, the unknown parameters are 

the individual entries of the true transition matrix.  Applying 

the likelihood principle to this application, the likelihood 

function describes how likely the estimates of the transition 

matrix are, under a given model, and given the road profile 

data.  Previously, [13] developed a likelihood ratio criterion 

for the Markov property and first order property [15].  The 

likelihood ratio is a statistic that compares the fit of two data 

models.  The two Markov Chain order tests that were 

applied are summarized as follows.  Test 1: The first 

likelihood ratio criterion tests the null hypothesis, *Î that the 

estimated transition matrix�2à is 0th order versus the 

alternative hypothesis *ºßç that 2à has first order properties 

using 

ã LÑBLÜ
F
LÜ
EF

W C
áÔÕ

ÜáÝ

 (8) 

The marginal probability is defined by ĻÝ L Ã ĻÜÝÜ  and the 

required test statistic Ft �� ã is asymptotically ï6 distributed 

with :N F s;6 degrees of freedom under the null hypothesis 

[13],[15].  Test 2: The second likelihood ratio criterion tests 

the null hypothesis, *Î that 2à is 1st order versus the 

alternative hypothesis, *ºßç that �2à has second order 

properties using G L sá å á N and  

ã LÑBLÜ
FG

LÜ
EFG

W C
áÔÕÖ

ÜáÝáÞ

 (9) 

where  

ĻÝÞ LÍJÜÝÞ
E

ÍÍJÜÝÞ
ÞE

X �

ĻÜÝÞ L JÜÝÞ ÍJÜÝÞ
Þ

W  
(10) 

For this test, the required test statistic Ft �� ã is 

asymptotically ï6 distributed with N:N F s;6 degrees of 

freedom under the null hypothesis [13], [15].  This paper 

requires Test 1 to result in *ºßç and Test 2 to result in *Î 

simultaneously to confirm the first order Markov property.  

These likelihood ratio criterion tests are applied to the 

differenced measured data and the synthetic data for both 

uniform and non-uniform sized bin techniques.   

 

B. Two Sample Kolmogorov-Smirnov Test for Estimated 

Transition Matrices 

The discussion concerning the binomial percentiles and 

their relationship to the first order Markov transition matrix 

motivates the need for a statistical test to quantify how well 

synthetic realizations represent the estimated transition 

matrix.  Consider the number of transitions in a synthetic 

profile from state i to state j.  The number of occurrences is 

binomially distributed as developed in (5).  The 

corresponding CDF for this distribution is given in (7).  If 

the synthetic data is generated from the transition matrix, 

then one would expect that 50% of the transitions in the 
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matrix would have a CDF of less than 50%.  Similarly, one 

would expect that P% of the transitions would have a CDF 

less than P%.  Simply put, if the synthesized profile is a 

realization of the transition matrix, then the distribution of 

these CDFs should be uniformly distributed themselves.  

Consider a specific example where seven states are used, 

creating 49 transitions.  For a given synthetic profile the 

number of transitions follows a binomial distribution and has 

a corresponding CDF (5) and (7).  Now consider sorting all 

49 of these CDFs.  If the synthetic profiles come from the 

transition matrix, then the CDFs should be (nearly) 

uniformly distributed between 0% and 100%.   

The acceptable amount of deviation from this straight line 

can be testing using a two sample Kolmogorov-Smirnov (K-

S) test that compares the empirical CDF of the actual 

binomial percentiles sampled to the reference CDF (a 

straight line).  The null hypothesis is that the synthetic 

profile comes from the transition matrix.  Again, to be clear, 

the distribution of the CDFs of the number of occurrences 

for all transitions should be uniform.  Underlying that, the 

number of occurrences for each transition is binomially 

distributed. 

 The K-S test is applied as follows.  Let $Î�âå�ÇÎ
ñ  be the 

binomial percentiles (7) of the synthetic data (uniform or 

non-uniform binning method), where the prime denotes 

synthetic hereafter. 

$Î�âå�ÇÎ
ñ

� srr H ( l>@JEF" â0EF" á LÜEFAp���
Ê�Eá F Ð 5 

(11) 

Let $åØÙ be the reference uniform distribution of binomial 

percentiles, which occur at N6 evenly spaced points on the 

interval [0,100].  The max distance between the empirical 

and reference CDF’s is 

& L ���
>4á544?

+(:$Î�âå�ÇÎñ ;F (k$NABo+ (12) 

Then the null hypothesis *Î is rejected at a significance 

level Ù if 

¥N t¤ & P %:Ù; (13) 

where %:Ù; is the critical value at the specified value of Ù. 

IV. EXAMPLE 

In this section, an example comparing uniform and non-

uniform binning state defining techniques is presented.  First 

the measured data is checked to see if a first order Markov 

Chain model is applicable using the autocorrelation function. 

In order for a first order Markov model to apply, the 

autocorrelation [16] must not be significant past the first lag 

[11],[17].  Fig. 2 a) illustrates the original and differenced 

data and Fig. 2 b) indicates that the differenced road profile 

is a good candidate for a first order Markov Chain model.       

 
 a) b)  

Fig. 2.  a)Original and differenced data,  b)Autocorrelation of original and 

differenced data 

 Next the differenced data was binned into N L y states 

using the current method of uniform binning and the 

proposed method of non-uniform percentile-based sized 

bins.  The contrast between the two binning methods is 

illustrated by considering the CDF of the differenced data.  

Fig. 3 shows that the uniform binning method produces 

equally sized bins in terms of the range of the data on the x-

axis (shown as solid vertical lines), while the proposed non-

uniform percentile-based method produces equally sized 

bins in terms of the cumulative probability on the y-axis 

(shown as dash-dot horizontal lines indicating equal 

probability intervals and corresponding vertical dash-dot 

lines showing how the equal probability intervals correspond 

to intervals in the state space).  The binned data were then 

tested using the likelihood ratio criterion tests for Markov 

Chain order and were found to have the first order Markov 

Chain property.  
Next, the number of occurrences of all state transitions, N, 

and estimated transition matrices 2à were calculated.  Fig. 4 

a)-b) illustrate that the uniform binning of states does not 

fully populate N and 2à.  This results in the loss of the ability 

to synthesize profiles accurately from 2à due to the not well 

defined binomial distributions as discussed in the 

background section.  Fig. 4 c)-d), however, illustrate that the 

non-uniform percentile-based binning of states fully 

 
Fig. 3.  Bin edges using uniform (U) and non-uniform (NU) percentile-

based methods and CDF of differenced data 
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Fig. 4.  a)Uniform bins N, b)Uniform bins 2à, c)Non-Uniform percentile-

based bins N, d) Non-Uniform percentile-based bins 2à 
populates N and 2à.  The non-uniform percentile based 

method results in well defined underlying binomial 

distributions which enables accurate sampling for 

synthesizing profiles. 

Furthermore, the numbers in N using both binning 

methods can be summarized below by Fig. 5.  Fig. 5 is a 

histogram of all JÜÝ for both methods.  Specifically, Fig. 5 

shows that the entire matrix of state transitions N is 

governed by the binomial distribution.  Fig. 5 illustrates that 

the non-uniform binning method has a much wider range of 

JÜÝ occurrences.  Recalling the example illustrated in Fig. 1 

and (5), it can be concluded that the uniform binning method 

is similar to Case 1 (not well defined binomial distribution), 

and the non-uniform method is similar to Case 2 (well 

defined binomial distribution).  This implies that 

synthesizing profiles using the uniform binning method will 

produce inaccurate samples due to the not well defined 

binomial distribution.  

Next, the transition matrices are used to generate synthetic 

realizations.  The realizations are quantized using the two 

 
Fig. 5.  Number of occurrences of JÜÝ vs. JÜÝfrom counting matrices 

 
Fig. 6.  K-S tests for CDFs: current method of uniform binning and 

proposed method of percentile-based binning compared to reference CDF 

(N L y states)  

binning methods: the current uniform binning method and 

the proposed non-uniform percentile-based binning method.   

The corresponding number of transitions is determined as 

well as the binomial percentile CDF’s (shown above in Fig. 

6). 

The two- sample K-S Test with significance level of 

Ù L rärw is applied to the CDF of the number of 

occurrences using uniform binning and non-uniform 

binning.  The results in Fig. 6 indicate that the proposed non-

uniform binning method approximates uniform distribution 

of the CDFs and the K-S fails to reject the null hypothesis.  

Fig. 6 also shows that the current practice of uniform 

binning results in a highly biased distribution where a 

majority of CDFs are in the 100th percentile, which is not 

representative of the underlying CDFs.  Using the uniform 

binning method, the null hypothesis can be rejected, 

indicating that this method did not sample properly due to 

the not well defined binomial distribution.   

V. DISCUSSION 

The uniform and non-uniform percentile-based binning 

methods were applied to 89 measured and differenced road 

profiles obtained at the Virginia Tech VTTI location.  The 

longitudinal resolution of the profiles was 2.5 cm which 

resulted in a total profile length of 173.3 m.  The first order 

Markov Chain properties were found to hold for measured 

differenced and synthesized differenced data using the 

current method of uniform sized bins and the proposed 

method of non-uniform percentile-based sized bins.  Fig. 7 , 

however, shows that the proposed method is more accurate 

for synthesizing profiles as is evidenced in the mean and 

peak amplitude values.  This is a direct result of the non-

uniform percentile-based method capturing the spatial 

characteristics of the differenced data more accurately than 

the current uniform sized binning method. 

Although this paper has shown substantial improvements 

to first order Markov Chain models for synthesizing 

differenced profiles, more work needs to be done to model 

the original data.  Here, the differenced data was used 

because the original data low frequencies were difficult to 
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model using a first order Markov Chain.  Since differencing 

the data is a specific, non-ideal high pass filter, the work 

presented in this paper serves as a benchmark proof of 

concept for applying Markov Chain models to spectrally 

decomposed profile data.  Future work will concentrate on 

band-passed filtered data, using a small number of separate 

first order Markov Chains to model the original profiles.  

The implicit assumption of this future work is that the 

different frequency ranges are independent.  The present 

work, however, makes two key contributions:  1)a method to 

more fully populate the transition matrix, 2)a two sample 

statistical test to determine how well the estimated transition 

matrix was sampled from, using the definition of the 

underlying binomial distribution.   

VI. CONCLUSIONS 

A comparison of two different binning methods to define the 

states for a first order Markov Chain model for differenced 

synthetic road profile data is developed in this work.  The 

theory is developed and demonstrated through an example to 

show that the non-uniform percentile-based state definition  

results in a more fully populated estimated transition matrix.   

 
Fig. 7.  Differenced data:  a)measured, b)synthetic using uniform method, 

c)synthetic using non-uniform percentile-based method 

This new method is also shown to result in more accurate 

sampling from the underlying binomial distribution which 

defines each entry in the transition matrix.  A statistical test 

is developed to test how well a synthetic realization 

corresponds to the uniformly distributed CDF of number of 

transitions (where the number of transitions between a 

particular pair of states is binomially distributed).  The 

results combine to indicate that use of the proposed non-

uniform method results in more confident estimates of the 

transition matrix and more representative synthetic road 

profiles. 
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